合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 界面張力儀評估氨基化氧化石墨烯-脂肪酸共吸附機制、應(yīng)用潛力(四)
> 不同船用柴油機油基礎(chǔ)油界面性質(zhì)與分水性的關(guān)系
> 鋰電池隔膜粘接劑組合物稀釋液表面張力測試及影響
> 各種測量ILs汽化焓對比:表面張力法、熱重法、簡單相加法、 基團貢獻法……(二)
> 礦漿表面張力對黃鐵礦與磁黃鐵礦浮選回收率的影響(一)
> 從潤濕到粘附:臨界表面張力(γc)如何重塑表界面科學(xué)?
> 尿液中出現(xiàn)大量泡沫是不是得腎???
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 新無氰白銅錫電鍍液及電鍍方法可降低表面張力,促進鍍液對復(fù)雜工件的潤濕
> 靜電噴霧液滴接觸荷電原理
推薦新聞Info
-
> 聚合物稠化劑(ASCM)合成條件、界面張力及耐鹽、耐剪切性能(二)
> 聚合物稠化劑(ASCM)合成條件、界面張力及耐鹽、耐剪切性能(一)
> 新型多羥基苯磺酸鹽驅(qū)油劑的界面張力優(yōu)化及油田應(yīng)用潛力分析(三)
> 新型多羥基苯磺酸鹽驅(qū)油劑的界面張力優(yōu)化及油田應(yīng)用潛力分析(二)
> 新型多羥基苯磺酸鹽驅(qū)油劑的界面張力優(yōu)化及油田應(yīng)用潛力分析(一)
> 基于最大氣泡壓力方法測量液態(tài)鋰錫合金表面張力
> 烷基糖苷表面活性劑界面張力與潤濕性相關(guān)性研究(二)
> 烷基糖苷表面活性劑界面張力與潤濕性相關(guān)性研究(一)
> 嵌段比例對溫敏聚合物表面張力的影響及臨界膠束濃度分析(五)
> 嵌段比例對溫敏聚合物表面張力的影響及臨界膠束濃度分析(四)
壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗部分
來源:化工學(xué)報 瀏覽 1209 次 發(fā)布時間:2024-07-31
目前,隨著科技的不斷發(fā)展與進步,全球變暖現(xiàn)象愈加劇烈。碳捕集、CO2利用與封存(CCUS)是應(yīng)對全球氣候變化的關(guān)鍵技術(shù)之一,可減少70%~82%的碳排放量。其中,CO2驅(qū)油技術(shù)(CO2enhanced oil recovery,CO2-EOR)是重要手段之一,可在提高原油采收率的同時,實現(xiàn)對CO2的封存,常用于三次采油。CO2驅(qū)油技術(shù)分為混相驅(qū)和非混相驅(qū),區(qū)分兩者的關(guān)鍵是最小混相壓力(minimum miscibility pressure,MMP)。當(dāng)壓力高于MMP時,CO2與原油間的界面消失,界面張力(interfacial tension,IFT)為零。通過對界面張力外推,則可得到CO2-原油體系的MMP。因此,對CO2-不同原油組分界面張力的測定具有重要意義。
原油中主要成分為飽和鏈烴,同時含有少量的環(huán)烷烴與芳香烴。Li等測定了CO2-正構(gòu)烷烴(n-C10~n-C20)的界面張力,并將比容平移后的P-T狀態(tài)方程與密度梯度理論結(jié)合起來對結(jié)果進行了計算,所有體系的平均絕對偏差為6.1%。Mutailipu測量了CO2-正構(gòu)烷烴(n-C11/C13/C14/C20)的界面張力,通過外推獲得MMP,并與實驗值進行比較,結(jié)果較好。商巧燕測定了CO2-正構(gòu)烷烴(n-C9/C11/C13/C15/C17)的界面張力,并擬合了計算CO2-正構(gòu)烷烴界面張力的經(jīng)驗公式,形式簡單,計算的平均相對偏差為5.45%。綜上所述,CO2-正構(gòu)烷烴體系界面張力數(shù)據(jù)已較為全面,但CO2-環(huán)烷烴/芳香烴體系的界面張力數(shù)據(jù)比較缺乏,以往的學(xué)者將環(huán)烷烴組分等效為碳數(shù)相近的飽和鏈烴組分,造成了界面張力的預(yù)測誤差。因此對CO2-環(huán)烷烴/芳香烴組分界面張力的測定與預(yù)測十分必要。
本團隊自行設(shè)計高溫高壓界面張力測定裝置,并對CO2-正構(gòu)烷烴界面張力進行了測定。本文對此實驗裝置進行了重新校驗,采用懸滴法對CO2-環(huán)烷烴/芳香烴等體系的界面張力進行測定,測量范圍為40~120℃,0.27~14.70 MPa。探討了壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對界面張力的影響。提出了關(guān)聯(lián)方程,將界面張力的實驗數(shù)據(jù)關(guān)聯(lián)為溫度、壓力、碳原子數(shù)和偏心因子的函數(shù),并對實驗數(shù)據(jù)進行了擬合,得出了方程參數(shù)。
本文提供的實驗數(shù)據(jù)及估算方法為CO2驅(qū)油技術(shù)提供了基礎(chǔ)數(shù)據(jù),可為工程上預(yù)測不同溫度、壓力下CO2-不同結(jié)構(gòu)原油組分的界面張力提供指導(dǎo)。
1實驗部分
1.1實驗試劑
CO2(純度99.999%),天津市東祥特種氣體有限責(zé)任公司;環(huán)戊烷(純度96.0%),上海阿拉丁生化科技股份有限公司;環(huán)己烷(純度99.7%),天津市元立化工有限公司;環(huán)辛烷(純度99.0%),凱瑪特(天津)化工科技有限公司;甲苯(純度99.5%),天津市元立化工有限公司;乙苯(純度98.5%),上海阿拉丁生化科技股份有限公司;乙基環(huán)己烷(純度99.0%),上海阿拉丁生化科技股份有限公司;正十一烷(純度99.0%),天津市光復(fù)精細化工研究所。
1.2實驗裝置
懸滴法是測量高溫高壓界面張力的常用方法。根據(jù)其原理本團隊自行設(shè)計的測量裝置可耐壓40 MPa。該裝置主要分為四個部分:氣體注入部分,液體注入部分,高溫高壓可視釜以及圖像的采集處理。詳細裝置內(nèi)容可參見文獻。
1.3實驗流程
首先通入CO2排除釜內(nèi)空氣,壓力達到預(yù)定值時,設(shè)置溫度并加熱。待溫度、壓力穩(wěn)定后,向釜內(nèi)打入油品,在針頭處形成油滴。保持油滴懸停10 min,以達到平衡狀態(tài),開始采集圖像(圖1)。得到的圖像采用軸對稱分析法(ADSA)進行分析,其公式為
式中,γ為界面張力,mN/m;,Δρ為兩相密度差,kg/m3;g為重力加速度,g=9.80 m/s2;de為懸滴最大直徑,m。油滴尺寸如圖1標(biāo)注,ds為距油滴頂點垂直距離為de處油滴截面直徑,m。1H可由Andreas等建立的函數(shù)表得到。
圖1 ADSA分析法選面示意圖
目前,Δρ的獲得分為兩種方法,一種是測量出平衡時的汽液兩相密度,代入式(1)、式(2)中計算;另一種是由平衡時兩相的純相密度代替。本文采用第二種方法,CO2的密度由NIST查得,平衡時的烷烴密度則采用Mutailipu等提供的方法查得。
1.4裝置校驗
為了測試并驗證裝置和測量方法的可靠性,本研究選用CO2-正十一烷作為測試體系,用該裝置測定了其80℃下的界面張力,并與文獻值進行了比較,結(jié)果如圖2所示。從結(jié)果可以看出,本研究測定的數(shù)據(jù)與文獻數(shù)據(jù)具有很好的一致性。結(jié)果表明,該裝置可行。
壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗部分
壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗結(jié)果與討論





