合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 微凝膠顆粒在氣液界面處吸附動力學(xué)及動態(tài)方程研究——結(jié)果與討論
> 人類對于水的認(rèn)識以及提純水的歷程
> 涂裝縮孔和回縮產(chǎn)生的原因及解決方法
> 乳化劑在化妝品中起什么作用?
> 噴霧藥液性質(zhì)與農(nóng)藥沉積利用率關(guān)系研究
> 表面張力儀的標(biāo)準(zhǔn)測試方法
> 疏水劑HFBⅡ和乳清蛋白組成的混合體系中的表面流變學(xué)與泡沫歧化穩(wěn)定性的關(guān)系——摘要、介紹、材料和方法
> 板式表面張力貯箱導(dǎo)流板液體傳輸能力計算方法
> 分子表面包裝對于磷脂單分子層膜中的錨定蛋白中酶活性的調(diào)制作用的影響——材料和方法
> 采用蒸餾水或乙醇校準(zhǔn)表面張力儀的方式正確嗎
推薦新聞Info
-
> 聚合物稠化劑(ASCM)合成條件、界面張力及耐鹽、耐剪切性能(二)
> 聚合物稠化劑(ASCM)合成條件、界面張力及耐鹽、耐剪切性能(一)
> 新型多羥基苯磺酸鹽驅(qū)油劑的界面張力優(yōu)化及油田應(yīng)用潛力分析(三)
> 新型多羥基苯磺酸鹽驅(qū)油劑的界面張力優(yōu)化及油田應(yīng)用潛力分析(二)
> 新型多羥基苯磺酸鹽驅(qū)油劑的界面張力優(yōu)化及油田應(yīng)用潛力分析(一)
> 基于最大氣泡壓力方法測量液態(tài)鋰錫合金表面張力
> 烷基糖苷表面活性劑界面張力與潤濕性相關(guān)性研究(二)
> 烷基糖苷表面活性劑界面張力與潤濕性相關(guān)性研究(一)
> 嵌段比例對溫敏聚合物表面張力的影響及臨界膠束濃度分析(五)
> 嵌段比例對溫敏聚合物表面張力的影響及臨界膠束濃度分析(四)
為什么有的液體會粘?
來源:許小然 瀏覽 1523 次 發(fā)布時間:2022-09-15
首先放結(jié)論
宏觀的流體/固溶體的黏性是流體的內(nèi)摩擦力的體現(xiàn),而內(nèi)摩擦力主要來自于分子間作用力(不僅僅是分子間的次價鍵);氫鍵是其中一種較為常見的、會導(dǎo)致粘性增強(qiáng)的原因。
所以我們先從內(nèi)摩擦力開始說起:
粘性的本質(zhì):內(nèi)摩擦力
液體的內(nèi)摩擦力(internalfriction)又稱黏性力,在液體流動時呈現(xiàn)的這種性質(zhì)稱為黏性,度量黏性大小的物理量稱為黏度。為了理解內(nèi)摩擦力的具體所指,最簡單的模型是標(biāo)準(zhǔn)平行雙平板實(shí)驗,實(shí)驗裝置如下圖所示:
圖片來源:百度百科-內(nèi)摩擦力
在這張圖中,下方的平板和兩個平板間的液體保持相對靜止,且液體內(nèi)部沒有對自身體內(nèi)不同質(zhì)點(diǎn)的相對流動,而將上方平板做水平向右的推動。可以看見,在與上方平板直接接觸的一層液面處可以達(dá)到與被推動的平板相同的速度,而在垂直距離上越遠(yuǎn)離上層平板的部分的速度越慢,直到最下層與下方平板直接接觸的液面處速度為零,在兩個平板之間存在一個連續(xù)變化的速度分布。
把這個流體內(nèi)垂直距離上的速度分布從實(shí)驗裝置中抽象出來,我們可以定性的說,粘性是流體在與受外力方向垂直的方向上傳遞力(剪切應(yīng)力)的能力。這也解釋了為什么人在蜂蜜中游泳(有這個實(shí)驗)比在水中游泳速度快的原因——因為考慮到蜂蜜的高粘度(即高的垂直方向剪切應(yīng)力傳遞能力),人手在撥動流體的時候無形中牽涉了更多質(zhì)量的流體來和自己的體重發(fā)生動量守恒過程。
將流體內(nèi)速度在垂直方向上的分布抽象出來之后會得到下面這張圖:
圖片來源:維基百科-粘性
(那個梯度的切線不用管,意思是說在并行流動中剪切應(yīng)力與速度梯度成正比)
不同種類的流體其速度分布具有不同的特征。
以上,我們完成了對內(nèi)摩擦力具體指渉的內(nèi)容的限制,現(xiàn)在我們來看看粘性的來源。
粘性的來源:分子間力
一言以蔽之,粘性來自分子間力——那為什么還要單寫這一節(jié)呢?主要是為了通過引例來加深對于分子間力與粘性力關(guān)系的理解。其實(shí)生活中比較常見的、在感性上可以被歸為粘性物質(zhì)(比如膠水、糖水、淀粉水)的粘性,歸根結(jié)底基本有兩個來源:
1、以水為代表的氫鍵
氫鍵是次價鍵(主要是氫鍵和范德華力)中作用力最強(qiáng)的物質(zhì)關(guān)系,也正因此才被冠以“鍵”的稱號,本意是“像鍵一樣”的次價鍵。
氫鍵的有無和多少會顯著的影響到分子間的作用關(guān)系,繼而在機(jī)械性能上影響其粘度。而加入其他會增加氫鍵作用的物質(zhì)作為溶質(zhì)時,比如本問題涉及的糖水,則會更進(jìn)一步地通過增加氫鍵的強(qiáng)度來提升液體的粘性。
而氫鍵本身鍵能畢竟相對化學(xué)鍵還是要低,通過升溫等方法是可以將氫鍵破壞的。比如把水燒開之后,水分子之間的氫鍵就會斷開,形成無良商家口中所謂的“小分子水”(哇我超想看商家喝我給他準(zhǔn)備的真·小分子水),這個時候你再把開水從水壺里倒出來,你會發(fā)現(xiàn)——它好跳啊!
2、以淀粉溶液為代表的分子間的物理纏結(jié)
淀粉作為多糖,是一種高分子,其分子結(jié)構(gòu)呈線型,會在熵的要求下自發(fā)高度卷曲蜷縮,其中則包含大量分子之間纏結(jié)的現(xiàn)象。這種分子間的纏結(jié)同樣也會(甚至可以說是更直接地)加深分子間的聯(lián)系,繼而增強(qiáng)宏觀液體的粘性。





